当前位置:首页 > 科技博览 > 科技热点 > 正文

超疏水材料的前世今生

发布时间: 2019-03-07 13:59:08   作者:本站编辑   来源: 本站原创   浏览次数:        字号:[ 常规 ]

超疏水材料是一种对水具有排斥性的材料,水滴在其表面无法滑动铺展而保持球型滚动状,从而达到滚动自清洁的效果。润湿性是固体材料表面的重要性质之一,决定材料表面润湿性能的关键因素包括材料表面的化学组成和表面的微观几何结构。因此科学家将静态水接触角大于150°,滚动角小于10º的表面称为超疏水表面。超疏水材料普遍同时具有微纳米复合结构和低表面能的化学物质,这也是成为超疏水材料的前提。超疏水表面因其具备自清洁、油水分离、抗腐蚀、防结冰以及防雾等优秀特性,近几年来备受材料学家的青睐,吸引了大批科学家投入到超疏水材料的研究中去。

其实远在两千多年前,人们就发现有些植物虽然生长在污泥里,但是它的叶子却几乎永远保持清洁,一个最为典型的例子就是荷叶。荷花通常生长在沼泽和浅水区域,但却具有“出淤泥而不染”的特性,这使得荷花成为几千年以来被人们作为纯洁的象征。荷叶上的灰尘和污垢会很容易被露珠和雨水带走,从而保持表面的清洁。科学家将这样的子清洁现象称之为“荷叶效应”。

然而荷叶始终保持清洁的机理却一直不为人们所知,直到20世纪60年代中期扫描电子显微镜(SEM)的发展,人们才逐渐揭开了荷叶“出淤泥而不染”秘密。1977年,德国伯恩大学的Barthlott和Neinhuis通过扫描电镜研究了荷叶的表面结构形态,揭示了荷叶表面的微米乳突结构以及蜡物质是其拥有自清洁功能的关键。他们认为认为产生的“荷叶效应”是由蜡状物质这种低表面能的材料以及乳突这种具有微米粗糙结构共同引起的。

除了荷叶,自然界中还有很多植物和动物具有超疏水现象。水稻叶片上的水滴就比荷叶表面上的水滴有个性的多。不同于荷叶表面上的水滴可以向任意方向滚动,水稻的叶片上的水滴很容易沿着叶片生长的方向滚动,而在垂直的方向则较难滚动。类似的还有蝴蝶的翅膀,当蝴蝶翅膀扇动时,水滴会沿着轴心放射方向滚动从而使得液滴不会沾湿蝴蝶的身体。这种各向异性的黏附,使得蝴蝶翅膀可以在湿度环境下定向清洁,从而保证蝴蝶飞行时的稳定性并且避免灰尘的堆积。

ScreenShot00062.jpg

人法地,地法天,天法道,道法自然。通过对自然界中具有超疏水性的植物叶子的研究学习,可以知道制备超疏水表面需要具备两个条件:一是材料表面具有很低的表面能;二是固体材料表面构建一定粗糙度的具有微米和纳米的双重结构。

从固体表面的静态接触角来看,决定固体表面亲疏液性的关键在于材料表面的化学组成,而表面的粗糙程度只是增强了这一效果。所以在构建超疏水固体表面时,一般是在低表面能表面上构建粗糙表面或者在粗糙表面上修饰低表面能的物质。而人们首先从制备低表面能的物质开始研究,发现目前表面能最低的固体材料为硅氧烷和含氟材料。其中以含氟材料最为优秀,其表面能比硅氧烷低10 mN/m左右,而且氟是所有元素中除氢元素之外原子半径最小的元素。其电负性强,氟碳键键能大,内聚能低,热稳定性和化学稳定性高。具有耐热、耐候、耐化学介质性优良、折射率低等特性。因此,目前制备具有低表面能的材料大都是以含氟材料为主。除此之外,人们也开始尝试采用不同的方法控制表面结构来制备超疏水涂层。目前,常用的有层层自组装法、物理或者化学气相沉积法、刻蚀法、模板法、静电喷涂法以及溶胶凝胶法等。

虽然超疏水材料在实际生活中有着广泛的应用前景,但目前真正实现超疏水在实际中的广泛应用还有很多困难,其中最大的挑战是耐久性与透明度。疏水涂层与基体的粘附力比较差,粗糙结构也非常脆弱,当表面经过冲击、摩擦等机械作用很容易受到损坏而失去超疏水性能。因此开发具有稳定抗摩擦的超疏水涂层或者具有自修复功能的超疏水表面成为当前超疏水材料研究领域中急需解决的问题。一般来说要得到超疏水,其表面会有一定粗糙度,而粗糙度越大,折射率越大,透明度越低。这极大的限制了超疏水材料在光学器件上的应用。

从自然到仿生,超疏水材料从荷叶起步,一直发展到今天,一路上科学家从未停止过对自然的探索。我相信,随着我们对自然探索的深入,我们对自然的理解不断加深,超疏水领域一定会取得更大的进展。